Pollenwiki-rot.png

FT-IR-Spektrum: Unterschied zwischen den Versionen

Aus Pollen-Wiki
Zur Navigation springen Zur Suche springen
Zeile 151: Zeile 151:
|}
|}


=== Literatur ===
=== Weitere interessante Artikel ===
Weitere interessante Artikel:<br>
Berdahl MH, <ref> Berdahl MH, Pollen Analysis by FTIR Spectroscopy - A Feasibility Study for an Automated Method, Master Thesis 2014, Norwegian University of Life Sciences [https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/278095/berdahl_master2014.pdf?sequence=4&isAllowed=y (PDF-File)]</ref>,
Berdahl MH, <ref> Berdahl MH, Pollen Analysis by FTIR Spectroscopy - A Feasibility Study for an Automated Method, Master Thesis 2014, Norwegian University of Life Sciences [https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/278095/berdahl_master2014.pdf?sequence=4&isAllowed=y (PDF-File)]</ref>,
Depciuch J. et al. <ref> Depciuch J. et al, Identification of birch pollen species using FTIR spectroscopy, Aerobiologia (2018), 34, 4, p. 525-538 [https://link.springer.com/article/10.1007/s10453-018-9528-4 (Abstract)] </ref>,
Depciuch J. et al. <ref> Depciuch J. et al, Identification of birch pollen species using FTIR spectroscopy, Aerobiologia (2018), 34, 4, p. 525-538 [https://link.springer.com/article/10.1007/s10453-018-9528-4 (Abstract)] </ref>,
Kasprzyk I. et al. <ref>Kasprzyk I. et al., FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey, Food Control (2018), 84, p. 33-40 [https://www.sciencedirect.com/science/article/pii/S0956713517303626 (PDF-File)]</ref>,
Kasprzyk I. et al. <ref>Kasprzyk I. et al., FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey, Food Control (2018), 84, p. 33-40 [https://www.sciencedirect.com/science/article/pii/S0956713517303626 (PDF-File)]</ref>,
Buta E. et al., <ref>Buta E. et al., FT-IR Characterization of Pollen Biochemistry, Viability, and Germination Capacity in Saintpaulia H. Wendl. Genotypes, J. Spectrosc. (2015), Article ID 706370 [http://downloads.hindawi.com/journals/jspec/2015/706370.pdf (PDF-File)]</ref>
Buta E. et al., <ref>Buta E. et al., FT-IR Characterization of Pollen Biochemistry, Viability, and Germination Capacity in Saintpaulia H. Wendl. Genotypes, J. Spectrosc. (2015), Article ID 706370 [http://downloads.hindawi.com/journals/jspec/2015/706370.pdf (PDF-File)]</ref>
=== Literatur ===




<references />
<references />
{{Zitieren}}
{{Zitieren}}

Version vom 10. Oktober 2019, 08:43 Uhr

FTIR bzw. Fourier-Transformations-Infrarotspektrometrie

Rohspektren[Bearbeiten]

Die Spektren sind als erste Versuche anzusehen.
Unbehandelte Pollenproben. Aufgenommen mit einem Bruker FT-IR Spektrometer Alpha P, 24 Scans pro Spektrum, Wellenzahl 300 bis 4000 cm-1.

FT-IR Spektrum Wellenzahl (cm-1)

Absorbance Units

Adiantum raddianum Adiantum raddianum

2920, 0.053
2850, 0.042
1745, 0.022
1650, 0.024
1460, 0.021
1425, 0.023
1280, 0.024
1230, 0.024
1100, 0.029
1030, 0.029

Alstroemeria aurea Alstroemeria aurea

2920, 0.053
2850, 0.043
1735, 0.026
1635, 0.067
1540, 0.056
1515, 0.056
1165, 0.056
1040, 0.076
990, 0.066
830, 0.051

Corylus avellana Corylus avellana

2915, 0.012
2850, 0.010
2360, 0.008
1660, 0.014
1515, 0.015
1420, 0.017
1235, 0.018
1030, 0.029
985, 0.031
845, 0.026

Hippeastrum aulicum-IR.jpg Hippeastrum aulicum

2920, 0.038
2855, 0.031
1745, 0.019
1625, 0.032
1600, 0.032
1515, 0.037
1165, 0.041
1035, 0.056
985, 0.051
830, 0.043

Lilium speciosum Lilium speciosum

2920
2850
1745
1675
1630
1600
1515
1445
1375
1230
1165
1030
985
830
520

Musa ornata Musa ornata

2920
2850
1740
1460
1160
1020
720

All in one FT-IR.png All in one

2920, Kohlenhydrate C-H
2855, Kohlenhydrate CH
1745, C=O
1545, Amide und Lignin
1515, Sporopollenin
1480, Lipide und Proteine
1165, Sporopollenin



Wichtige Peaks[Bearbeiten]

Wellenzahl (cm_1) [1][2][3]
2920 C-H stretching
2850 CH (Methoxy..) stretching
1745 C=O stretching
1650-60 Amide I
1605 Sporopollenin
1550 Amide II und Lignin
1515 Sporopollenin
1462 C=O stretching
1410-1460 Lipide und Proteine
1171 Sporopollenin
970-1700 Kohlenhydrate
833 Sporopollenin

Weitere interessante Artikel[Bearbeiten]

Berdahl MH, [4], Depciuch J. et al. [5], Kasprzyk I. et al. [6], Buta E. et al., [7]

Literatur[Bearbeiten]

  1. Zimmermann B, Kohler A, Infrared Spectroscopy of Pollen Identifies Plant Species and Genus as Well as Environmental Conditions. PLoS ONE (2014): 9(4): e95417. doi:10.1371/journal.pone.0095417 [1]
  2. Dell'Anna R et al, Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning, Anal Bioanal Chem (2009): Jul 394(5):1443-52. doi: 10.1007/s00216-009-2794-9. Epub 2009 Apr 25 [2]
  3. Ofelia A et al, Pollen composition discrimination by FTIR-ATR Spectroscopy, Conference Paper, Annual meeting of the International Honey Commission, OC5, Braganca, Portugal, September 2012 [3]
  4. Berdahl MH, Pollen Analysis by FTIR Spectroscopy - A Feasibility Study for an Automated Method, Master Thesis 2014, Norwegian University of Life Sciences (PDF-File)
  5. Depciuch J. et al, Identification of birch pollen species using FTIR spectroscopy, Aerobiologia (2018), 34, 4, p. 525-538 (Abstract)
  6. Kasprzyk I. et al., FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey, Food Control (2018), 84, p. 33-40 (PDF-File)
  7. Buta E. et al., FT-IR Characterization of Pollen Biochemistry, Viability, and Germination Capacity in Saintpaulia H. Wendl. Genotypes, J. Spectrosc. (2015), Article ID 706370 (PDF-File)

Stebler Th., FT-IR-Spektrum, In: Pollen-Wiki (31. Okt. 2024), https://pollen.tstebler.ch/MediaWiki/index.php?title=FT-IR-Spektrum .